ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

M.Sc. (COASTAL DISASTER MANAGEMENT)

COURSE CODE: 379

Register Number	:	
Register Number		

Signature of the Invigilator (with date)

COURSE CODE: 379

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	The diagonal of double that of the	-		diago	nal of another s	quare	whose area is
	(A) 8 cm	(B)	8√2 cm	(C)	4√2 cm	(D)	16 cm
2.	A train starts wit 10 km/hr. In how	_				ig evei	ry two hours by
	(A) $2\frac{1}{4}$ hrs			(B)	4 hrs 5 mins		
	(C) 4½ hrs			(D)	None of the abo	ove	
3.	How long does a a bridge 132 met			ning a	at the speed of 7	2 km/l	nr take to cross
	(A) 9.8 sec	(B)	12.1 sec	(C)	12.42 sec	(D)	14.3 sec
4.	A boatman goes 2 the current in 10						
	(A) 40 minutes			(B)	1 hr		
	(C) 1 hr 15 min	utes		(D)	1 hr 30 minute	S	
5.	The value of						
	$\frac{\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}\right)}{\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}}$	$\frac{\div \frac{1}{2}}{\div \frac{1}{4}}$					
	is						
	(A) 2	(B)	3/2	(Č)	4/13	(D)	3 6/13
6.	(A) 2 The ratio of the i If at the end of ea	ncomes o	f A and B is 5 : 4	and a	the ratio of their	expe	
6.	The ratio of the i	ncomes o	f A and B is 5 : 4	and a	the ratio of their	expe	
 6. 7. 	The ratio of the i	incomes of ach year, (B)	f A and B is 5 : 4 each saves Rs. 16 Rs. 3600	4 and 6	the ratio of their nen the income o	exper	nditure is 3 : 2.
	The ratio of the in If at the end of each (A) Rs. 3400	incomes of ach year, (B)	f A and B is 5 : 4 each saves Rs. 16 Rs. 3600	4 and 6	the ratio of their nen the income o	exper	nditure is 3 : 2. Rs. 4400
	The ratio of the in If at the end of each (A) Rs. 3400 Half of 1 per cent	incomes of ach year, (B) t is equal (B)	f A and B is 5 : 4 each saves Rs. 16 Rs. 3600 to	4 and 6600, th	the ratio of their nen the income of Rs. 4000	experf A is (D)	Rs. 4400

9.		vhat ratio must ture worth Rs. 8			ed with	milk	costing Rs. 1	.2 per li	ter to ob	tain a
	(A)	1:2	(B)	2:1		(C)	2:3	(D)	3:2	
10.		umber was divid ectively 2, 3 and				ler by	4, 5 and 6.	The rem	ainders	were
	(A)	214	(B)	476		(C)	954	(D)	1908	
11.	High	nest mountain pe	eak in	south In	dia is					
	(A)	Dotabetta				(B)	Anaimudi			
	(C)	Permedu				(D)	Thengumerh	ada		
12.	How	many states are	const	tituted fr	om Fede	eral Ir	ndia?			
	(A)	30	(B)	26		(C)	27	(D)	28	
13.	Whi	ch narrow water	body	separates	s Sri Laı	nka fr	om India?			
	(A)	Gulf of Mannar				(B)	Palk Strait			
	(C)	Bay of Bengal				(D)	Palk Bay			
14.	Whi	ch Mountain Sep	arates	s Myanm	ar from	India	?			
	(A)	Himalayas				(B)	Arakan Yom	a		
	(C)	Kosi Hills				(D)	Jaintiya Hill	S		
15.	Wine	dward side of the	moui	ntain is t	he					
	(A)	Rain shadow re	gion							
	(B)	Rainfall region								
	(C)	Poor rainfall reg	gion				•			
	(D)	Mountain which	does	not faces	the mo	isture	e bearing wind	ls		
16.	Siler	nt Valley is found	in							
	(A)	Karnataka			.4	(B).	Tamil Nadu			
	(C)	Kerala				(D)	Andhra Prad	esh		
17.	Whic	ch country has th	e long	gest Bord	er with	India	?			
	(A)	Pakistan				(B)	Bangladesh			
	(C)	Nepal				(D)	Bhutan			

18.	How	many countries	forms	as apart	of SAA	RC?		
	(A)	7	(B)	6		(C)	8	(D) 5
19.	Whi	ch is the souther	n mos	t Tip of In	ndia?			
	(A)	Kanayakumari				(B)	Indira Point	
	(C)	Cape of Good H	ope			(D)	Dhanush Ko	odi
20.	Whi	ch Island of India	a is ne	earest to T	hailan	d?		
	(A)	Car Nicobar				(B)	Kamorta	
	(C)	Tillanachang				(D)	Nancowrie	
21.	Peni	insula is one whi	ch is s	urrounde	d by;			
	(A)	water on two si	des			(B)	water on thr	ree sides
	(C)	water on four si	ides			(D)	water on one	e side
22.	Seis	mograph is an ir	nstrur	nent whic	h meas	ures		
	(A)	pressure				(B)	humidity	
	(C)	earth quakes				(D)	cyclone	
23.	Eart	thquake is caused	d beca	use of				
	(A)	gravity				(B)	rotation of e	arth
	(C)	faulting				(D)	ocean currer	nts
24.		natra-Andaman e ollision of	earth	quake occ	urred :	26th 1	December 200	04, was formed because
	(A)	Pacific and Aus	tralia	n plates		(B)	Indian and	Burmese plates
	(C)	Australian and	Africa	an plates		(D)	American pl	ates and Asian plates
25.	Age	of the earth is						
	(A)	3.5 billion years	3		B 40	(B) -	4.5 billion ye	ears
	(C)	2.5 billion years	3			(D)	6 billion yea	rs
26.	Dee	pest portion of se	a is fo	ound in				
	(A)	Pacific ocean				(B)	Atlantic oce	an
	(C)	Indian				(D)	Arctic sea	

27.	In V	Which mountain, t	the hi	ghest peak is loc	ated?			
	(A)	Rockies			(B)	Andes		
	(C)	Himalayas			(D)	Appalachian		
28.	Whi	ch is the biggest	ocean	?				
	(A)	Pacific			(B)	Atlantic		
	(C)	Indian			(D)	Bay of Bengal		
29.	Den	sity is equal to						
	(A)	mass/volume			(B)	mass/velocity		
	(C)	mass/gravity			(D)	mass/area		
30.	Velo	city is equal to						
	(A)	distance/time			(B)	distance/area		
	(C)	volume/area			(D)	$\mathbf{speed} \times \mathbf{time}$		
31.	Nau	tical mile is equa	l to					
	(A)	1.85 km	$(B)_{\alpha}$	2.5 km	(C)	5 km	(D)	4 km
32.	Bigg	gest continent						
	(A)	Asia			(B)	Africa		
	(C)	North America			(D)	Europe		
33.	Whi	ch of the followin	g pla	nets show the sa	me "S	ize-bearing"?		
	(A)	Earth-Mars			(B)	Earth-Venus		
	(C)	Mars – Venus			(D)	Venus – Mercur	У	
34.	_	mpus Mons, the ace of	large	est known volca	ano in	the solar syste	m is	found on the
	(A)	Earth	(B)	Moon	(C)	Mars	(D)	Jupiter
35.	Whi	ch of the followin	g pla	nets has the leas	t dens	sity?		
	(A)	Earth	(B)	Mars	(C)	Venus	(D)	Saturn
36.	The	earth's crust is t	hicke	st under				
	(A)	Shield areas			(B)	Platforms		
	(C)	Phanerozoic oro	genic	belts	(D)	Archaen greens	tone k	oelts

37.		Neotectonic mov an sub-continent			-	e suggests that	in abo	ut 50 M.Y. the
	(A)	North	(B)	South	(C)	East	(D)	West
38.	Whi	ch of the following	g citie	es is Not Subsi	ding?			
	(A)	Mumbai	(B)	Chennai	(C)	Kolkata	(D)	Srinagar
39.	and	ndian sub contine south-west to the r in this belt?			-	_		
	(A)	Utter Kashi (19	75)		(B)	Lattur (1993)		
	(C)	Buj (2000)			(D)	Mushafarbad	(2005)	
40.	Acco	ording to the recen	nt vie	ws, Narmada-s	son line	ament has orig	inated	due to:
	(A)	Normal fault ted	ctonic	S	(B)	Wrench fault	tectonic	cs
	(C)	Taphrogenic mo	veme	nts	(D)	Oscillatory te	ctonic n	novements
41.		a was separated th Asia?	from	the Antartica	a about	140 M.Y. ago	. When	did it joining
	(A)	120 MY ago	(B)	80 MY ago	(C)	60 MY ago	(D)	45 MY ago
42.	The	sunda Trench do	NOT	runs parallel t	to the is	land of		
	(A)	Java	(B)	Sumatra	(C)	Maldives	(D)	Nicobar
43.	Cho	ose the correct an	swer				1	
	(A)	Andaman & Nic	obar 1	Isls Diastro	phic Isla	S		
	(B)	Madagascar	Barr	ier Reef		4		,
	(C)	Maldives Co	ntine	ntal Isls				
	(D)	Mauritius V	olcan	ic Isls	•			
44.		ch one of the f	follow	ing places is	more	likely to be	affected	d by chemical
3	(A)	Thar Desert			(B)	Tibetan plate	au	
	(C)	Leh			(D)	Siwalik		
	, -,				,_,			

45.	Circ	ular reefs enclos	ing a	shallow body	of water	are called		
	(A)	Lagoons			(B)	Atolls		
	(C)	Fringing reefs			(D)	Barrier reefs		
46.	Glad	ciers approximat	ely oc	cupy ———	—— % of	the worlds' are	a	
	(A)	10	(B)	15	(C)	18	(D)	20
47.	Soil	s in which sand, ed	, clay	and humus ar	re found	more or less in	equal	properties are
	(A)	Loamy soils	(B)	Regur	(C)	Chernozem	(D)	Pedalfer
48.	Whi	ch of the following	ng is N	NOT a feature	associate	ed with fluvial g	eomor	phic cycle?
	(A)	Cascade	(B)	Bluff	(C)	Slough	(D)	Matterhorn
49.	Seas	s which are near	ly sur	rounded by lar	nd masse	s are called		
	(A)	Relict seas			(B)	Epeiric seas		
	(C)	Marginal seas			(D)	Shelf seas		
50.	Whi	ch of the following	ng dur	nes appear U-s	haped in	plan view?		
	(A)	Barchans			(B)	Parabolic dune	S	
	(C)	Seifs			(D)	Dome dunes		
51.	The	sudden collapse	of va	pour bubbles i	n the wa	ater of a stream	is due	e to the process
	(A)	Solution			(B)	Cavitation		
	(C)	Corrosion			(D)	Corrassion		
52.	A Pl	ain formed by th	e grov	vth and joinin	g of flood	lplains is called		
	(A)	Pedeplain			(B).	Peneplain		
	(C)	Panplain			(D)	Etch plain		
53.	All t	the elements and	l their	isotopes are b	elieved t	o have synthesiz	zed fro	om the nuclei of
	(A)	Hydrogen			(B)	Helium		
	(C)	Oxygen			(D)	Nitrogen		

54.	The r	nost abundant n	ninera	als in the earth's	curst	belongs to			
	(A)	Quartz			(B)	Pyroxenes			
	(C)	Plagioclase feld	spars		(D)	Potash feldspars	S		
55.	Whic	h of the followin	g laye	ers of the earth c	an be	described as 'oxy	spher	e'?	
	(A)	Biosphere			(B)	Atmosphere			
	(C)	Asthenosphere			(D)	Lithosphere			
56.		most important tion was	sourc	e of radiogenic	neat p	production in the	eart	h just aft	er its
	(A)	U^{238}	(B)	U^{236}	(C)	Th^{232}	(D)	U^{235}	
57.	Whic	h of the followin	g has	the least ionic ra	adius	?			
	(A)	Na ⁺	(B)	Mg^{+2}	(C)	Al+3	(D)	Si ⁺⁴	
58.	B-dec	cay of K ⁴⁰ leads t	o the	formation of					
	(A)	Ar^{40}	(B)	Ca ⁴⁰	(C)	\mathbb{K}^{39}	(D)	Ar^{39}	
59.	Rain	water is distingu	ished	l from groundwa	ter by				
	(A)	Tritum method			(B)	Berylium metho	od		
	(C)	Rb-Sr method			(D)	Radio carbon m	ethod		
60.	By V	olume, oxygen o	ccupie	es about ———		of the continenta	l crus	t	
	(A)	94%	(B)	63%	(C)	47%	(D)	27%	
61.		ions can replace			al str	ucture only if the	e diffe	erence bet	tween
	(A)	5%	(B)	10%	(C)	15%	(D)	20%	
62.	Chen	nical composition	n of S	ea water is	(4))				
	(A)	$Cacl_2$	(B)	NaCl	(C)	$\mathrm{Mg}\ \mathrm{Cl}_2$	(D)	KCl	
63.	Struc	ctural Geology d	eals v	vith matters in t	he				
	(A)	Solid state			(B)	Liquid state			
	(C)	Gaseous state			(D)	All of the above			

64.	The	behavior of period	ectly e	elastic bodies is g	overn	ed by		
	(A)	Hooke's law			(B)	Hilt's law		
	(C)	Lambert's law			(D)	Bode's law		
65.	Whe	en the strain is r	ecove	rable but is also	time	dependent, the d	eform	ation is known
	(A)	Elastic	(B)	Anelastic	(C)	Plastic	(D)	Ductile
66.	A fo	ld which is conve /an	ex upv	vards and having	g youn	ger rocks in its c	ore m	ay be described
	(A)	Anticline	(B)	Antiform	(C)	Anticlinorium	(D)	Synform
67.	Thic	ckening and thin	ning o	f beds at crests a	and tr	oughs is found in	Ĺ	
	(A)	Open folds			(B)	Similar folds		
	(C)	Parallel folds			(D)	Concentric fold	s	
68.		naterial which ba			cous la	aw but which be	haves	elastically for
	(A)	Viscoelastic			(B)	Elastoviscous		
	(C)	Plastic			(D)	Ductile		
69.		ch of the followic components?	ing se	condary structu	res is	a combination	of pla	nar and linear
	(A)	Joints	(B)	Faults	(C)	Fold axes	(D)	Schistosity
70.	The	vertical sectiona	d view	of an area alon	g a de	fine line is know	n as a	/an
	(A)	Isolith	(B)	Outcrop	(C)	Contour	(D)	Profile
71.	Hig	her contours alw	ays er	close the lower	nes i	n the case of a		
	(A)	Hill	(B)	Valley	(C)	Basin	(D)	Spur
72.	Con	tour lines cannot	cross	or touch each of	ther e	except in the case	of	
	(A)	Escarpments			(B)	Scarp slope		
	(C)	Waterfall			(D)	Plateau		
73.	The	exoskeleton of s	ponge	s is made up of				
	(A)	Silica			(B)	Calcite		
	(C)	Aragonite			(D)	Calcium Phosp	hate	

75.	(A) (C)	Lingula Nautilus neomorphy is an example of Convergent evolution Parallel evolution	(B) (D) (B) (D)	Nucula Nummulites Divergent evolution
75.	Hom (A) (C) The	neomorphy is an example of Convergent evolution Parallel evolution	(B)	
75.	(A) (C) The	Convergent evolution Parallel evolution	2000000	Divergent evolution
	(C)	Parallel evolution	2000000	Divergent evolution
	The		(D)	
		C 1:1 : 1 : 1 C		Adaptive specialization
76.	(A)	fauna which comprises exclusively of a	ctive	swimmers is described as
		Plankton (B) Nekton	(C)	Benthic (D) Pelagic
77.		time of rapid evolutionary change of a ribed as	new	taxa or the adaptive radiation is also
	(A)	Tachytelic evolution	(B)	Bradytelic evolution
	(C)	Orthogenesis	(D)	Paragenesis
78.	Livi	ng fossils exhibit the phenomenon of		
	(A)	Bradytelic evolution	(B)	Orthogenesis
	(C)	Palingenesis	(D)	Tachgenesis
79.	Foss	il fecal pellets of ancient animals are d	escrib	ed as
	(A)	Gastriliths	(B)	Coproliths
	(C)	Beekite rings	(D)	Pseudo-fossils
80.	'Bipl	ication' is a feature commonly exhibite	d by	
	(A)	Brachiopds	(B)	Gasteropods
	(C)	Pelecypods	(D)	Cephalopods
81.	The	most gigantic of all the mollusks were		
	(A)	Pelecypods	(B):	Gasteropods
	(C)	Nautiloids	(D)	Ammonites
82.	The	fastest moving species among the inver	tebra	tes belong to
	(A)	Pelecypods	(B)	Gasteropods
	(C)	Cephalapods	(D)	Brachipods

83.	The	type area for the Sausar group is	3	
	(A)	Western Rajasthan	(B)	Nagpur – Bhandara
	(C)	Singhbhum (Bihar)	(D)	Chindwara (M.P)
84.	Amo	ong the following, the oldest rocks	s belong to	
	(A)	Sargur Schist Complex	(B)	Banded Gneissic Complex
	(C)	Older Metamorphic Group	(D)	Iron ore Group.
85.	The	younger succession of rocks in th	ne Kutch bas	sin is known as
	(A)	Bhuj formation	(B)	Umia formation
	(C)	Porbzander formation	(D)	Madh formation
86.	The	Siwalik group of rocks were de	_	the Himalayan for deep during the
	(A)	First (B) Second	(C)	Third (D) Fourth
87.	Whi	ch of the following areas is descri	ibedas the "	Field Museum in Paleontology?
	(A)	Vriddachalam (T.N)	(B)	Duddukuru (A.P.)
	(C)	Shevroy Hills (T.N)	(D)	Rapur (Punjab)
88.	The	trend of the Spiti sybnclinorium	is similar to	that of
	(A)	The Eastern Ghats	(B)	The Aravallis
	(C)	The Himalayas	(D)	The Satpuras
89.		he Upper Gondwana rocks of th	e Godavari	graben fossils are present in all the
	(A)	Yerrrapalli formation	(B)	Bhimavaram Formation
	(C)	Maleri formation	(D)	Kanthi formation
90.	To b	e classified as 'laminae' the thick	mess of each	n layer should be
	(A)	> 1 cm (B) < 1 cm	(C)	> 2 cm (D) < 2 cm
91.	Ripp	oles formed by water and wind di	ffer in their	
	(A)	Symmetry	(B)	Scale
	(C)	Azimuth	(D)	Ripple index

92.	In n	ature roundness varies between		
	(A)	0.01 to 0.05	(B)	0.05 to 0.1
	(C)	0.1 to 0.9	(D)	1.0 to infinity
93.	The	different colours of 'limonite' indicate t	he pr	esence of
	(A)	Oxides	(B)	Shuphides
	(C)	Carbonates	(D)	Sulphates
94.	Deta	ailed survey for oil and gas is done by		
	(A)	Seismic reflection	(B)	Seismic refraction
	(C)	Geomagnetic methods	(D)	Gravimetric methods
95.	In th	ne M.K.S system the magnetic field str	ength	is expressed in the units called
	(A)	Oersted (B) Tesla	(C)	Weber (D) Maxwell
96.	Anta	artic Ocean is located in		
	(A)	North pole	(B)	South Pole
	(C)	Equator	(D)	Tropic of Capricorn
97.	Whi	ch is the only existing Igneous Volcano	in Inc	dia?
	(A)	Narcondum	(B)	Diglipur
	(C)	Barren Island	(D)	Baratang
98.	Whi	ch area has the highest rainfall in Indi	a?	
	(A)	Bagamandala (Western ghats)	(B)	Saddle peak (Andaman Island)
	(C)	Minicoi (Laccadive Islands)	(D)	Chirapunji (Meghalaya)
99.	117	is divisible by		
	(A)	7 (B) 11	(C)	13 (D) 17
100.	High	nest Peak in the world is located in	•	
	(A)	Andis	(B)	Alps
	(C)	Himalayas	(D)	Urals